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In general, a frequency standard will have a nominally constant frequency output, v,. The lack
of constancy, the frequency instability, can be measured in the frequency-domain or the time-
domain. The conversion from frequency-domain measures to time-domain measures utilizes
an integral equation. For example, Dr. Leonard S. Cutler originally (1972) derived the following
for the time-domain variance known as the Allan variance:
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In practice, the integral over the power spectral density (PSD), Sy} of the normalized
frequency, v, is from zero (0) to the high-frequency cutoff (fa} of the measurement system
employed, where f is the Fourier frequency. A commonly used frequency-domain measure is

script L(f) = £ (f), the one-sided PSD of the phase fluctuations given by Sqa(f}, where @ isthe

residual phase deviation from a reference phase. Therefore, £L(f) =% S one may derive
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v 2777 and SelH = (27v,)? Sx(f). where x is the residual time deviation. Using

the above equations, one may also write the following:
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Now the typical five power-law spectral density models often utilized in time and frequency
metrology are Sy f% a= —=2,-1,0,+1L,+2  pgps are usually represented in a log-log
plot, then the exponent a is the straight-line slope. As will be shown later, there are some
simple equations that provide values for the frequency-domain measures as a function of the
time-domain measures and vice-versa. However, in general, the time-domain measures cannot
be integrated to obtain the frequency-domain measures. The above are the equations for
AVAR. The following are the definitions and equations for the Modified Allan variance, MVAR,
and for the Time variance, TVAR. The square roots of these three variances are commonly
designated ADEV, MDEV, and TDEV, respectively.

For analyzing a time series of time deviations, x(t), (t = m t, with t, being the data acquisition
spacingand m=0, 1, 2, 3, etc. up to the data length, M) AVAR may be written as follows:

o3 = 5 ((8%2))
where the averaging time is t. The A? is the second finite-difference operator -- operating on x.
The angle brackets {=} indicate that a time average is taken over the square of all the data
available for this second-difference operating on x. For T = nt,, the m™ value of y is given by ym
= (Xm — Xm-n)/T, and the m™ second-finite difference of the time differences between the clocks
for the time interval T may be written A%Xm = Xms2n - 2Xm+n — Xm.-



MVAR may be written as follows:

1
Mod. o (1) = —((A*%)%),
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where the X is the time-difference residuals averaged over the interval T. This averaging
technique effectively modulates the bandwidth in the software allowing one to distinguish

between white-noise phase modulation (PM) and flicker-noise PM.

For power-law spectral densities, AVAR and MVAR are proportional to t and to ™,
respectively. From Lighthill’s book on Generalized Functions... one can derive the following

mapping:
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Finally, the Time Variance, TVAR, may be written as follows:

2 - 1., 52
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It is normalized to be equal to the classical variance for white-noise PM, while 73 (2} is
normalized to be equal to the classical variance for white-noise FM.

For power-law spectra, TVAR has a similar proportionality relationship: g# (T} ~ 7 where
n=—f-land f= a - 2.



Hence, as a log-log plot is made of these three variances versus the averaging time, t, the slope
indicates the kind of noise and the ordinate value gives the level of the noise.

The range of applicability for these three variances is given in the following chart:
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Now for each of these five noise types, the frequency-domain measures can be calculated from
the time-domain measures by using the values taken from the following table. Of course, if the
frequency deviations, phase deviations, or time deviations data are available then the spectral
densities can be computed directly. If only the time-domain stability is known then this table

will provide the answer, again, for these five power-law spectral types.

Note that when stability plots are made, if they are of £(f) or So( then they are dependent
on the carrier frequency, Yo, and its value needs to be indicated on the plot. For all of the
other measures listed above (ADEV, MDEV, TDEV, S,(f), S«(f)) the carrier frequency has been
normalized out and need not be noted. White-noise PM and flicker-noise PM are also
dependent on the measurement system bandwidth, f,,, and its value should be noted on the
stability plots for all of the above measures when these models are used for the noise processes

observed.

As a general note, these time-domain measures can be used in almost any area of metrology
with significant benefits. Because of the general applicability, | wrote the following paper:
Should the Classical Variance be used as a Basic Measure in Standards Metrology?
http://tf.boulder.nist.gov/qgeneral/pdf/776.pdf
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A data set may need more than one spectral type or model to represent its performance. In
that case, a spectral density needs to be computed for each spectral type, and then those
different spectra can be added under the assumption of independence of the underlying driving
force causing that type of spectral density, which is usually a good assumption, but not always.

Once either Sy} or Sx(f) is known, then the other spectral densities can be calculated using
the equations above —including & (f). As a time-domain to frequency-domain conversion
example, suppose a quartz-crystal oscillator has a one-second stability o,(t ) = 2 x 102 with a
noise type of flicker FM, and we wish to know &(f=1Hz). For this example, from the above
9

table and equations we may write the following for flicker-noise FM: £ (f) " 4In2 f3
which for this example is equal to 1.44 x 10™° at 10 MHz. Expressed in dBc, this would be -98.4

dBc.

o; (1)

The confidence on the estimate of the above variances decreases as t increases because of the
decreasing number of degrees of freedom. The variances are Chi-squared distributed, and one
can show for AVAR, specifically, for the longest possible averaging time (t equal half the data
length) the most probable value for AVAR is zero, and that these variances tend to be biased
low for the largest averaging times available from a given length of data. Over the last couple
of decades, David A. Howe in the Time and Frequency Division at NIST, Boulder and his team
have done some remarkable work, and there are several publications, in removing these biases
and increasing the effective degrees of freedom. Their work can be found in the Division’s web
site publications (search for Howe). http://tf.nist.gov/general/publications.htm




The frequency-domain to time-domain integral equations for all three variances is given as
follows:

Translation Between
Frequency and Time Domains
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Typically, the values of T are taken as a geometric progression: n=1, 2, 4, 8, 16, etc. When that
is done the following shows that these time-domain variances are nominally sampling a square
window from the frequency domain.

AVAR Transfer Function
25 T T T T T T T T T T

1.5 —

| H(f) 2
|

0.5+

10
f in units of 1/1:O



MVAR Transfer Function
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Frequency-domain measures have a challenge in having high confidence on the low-Fourier
frequency components. With the work of Howe, et. al. the time-domain can give high
confidence estimates for large t values (low-Fourier frequency components). When the data
are available, it is typically recommended to analyze it both in the Frequency-domain as well as
in the Time-domain. For example, bright spectral lines (side-bands) can best be observed in the
Frequency-domain. A low-frequency side-band is best observed in the time-domain. It has an
unusual water-fall signature as shown in the following for ADEV and TDEV, respectively.



EFFECTS OF SINGLE FREQUENCY
MODULATION ON oy (1)

Sy (f) = 2.5 x 107" [1410% 6(f-60 H2)]
-9
10°% -
(r) & o . 5
0,(7) = = sin” (wf,7)
o0k
o, (T) 10° 1
N H
]0-13 1 | | J
107 1073 1072 107! 100
« (SECONDS)

Effect of fm on TDEV

2
10 |
—— White PM + Modulation
A
T
101 Empirical Fit
10° 4
//\
/ N
10"
&
b><
1021

L\’ u' “‘ "‘ iy ;
10° 7,5’ (7 fint) ¥ U I\‘;m\“;‘r?":‘f"‘
Gx(T)=1.4xpp°_— UUL!‘M“‘
ol 7sin(r fint,) i
10° 1c‘f o m1c‘)2 e
sample time, ©




AVAR may be shown to be an optimum estimator for variations in frequency for atomic clocks.
TVAR may be shown to be an optimum estimator for variations in time or phase, such as for
measurement systems, telecommunication networks, etc. MVAR allows one to observe both
clock and measurement instabilities in a near optimum way and it removes the ambiguity
problem existing for AVAR for power-law spectral density values where @ =1 | One may also
show that the time prediction error of a clock, xp (T} overan prediction interval T, equal to T,
under the assumption of optimum prediction, is given by the following for the various power-
law spectra. So if ADEV is known over various t values one can calculate the time keeping
ability for that clock. This has been done for a big variety of clocks as shown below.

Clock-time Keeping Ability

x,(r)=k 7 0,/(7)

k =1 for white FM and randomwalk FM

k=1/+In2 =1.2 for flicker FM

k=1/3 for white PM and flic ker PM

It is interesting that the time dispersion of the earth’s spin rate is the largest over very long
intervals. It is also of interest to note that over very large intervals the earth’s orbit stability
may be better than that of atomic clocks. Not enough data exist to show that either way.
Current atomic clocks are by far the most accurate measurements known with uncertainties
being analogous to less than one second in 3.7 billion years:

http://www.nist.gov/pml/div688/

One will notice that the short-term stability of quartz-crystal oscillators is outstanding. This has
been utilized in an ensemble mode to obtain atomic-clock like frequency stabilities for even
longer averaging times. This technology is called EQUATE and has the ability to also sense
rotation and translation. The above variances are highly utilized in the development of this
technology with the goal of providing excellent timing and navigation and removing coordinate
drift. If this can be done it will be unique and very useful in a large variety of applications.



Time Dispersion of Various Clocks
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